
#Devday4w

Lo que se debe y no se debe hacer
para una actualización en

PostgreSQL AWS RDS

Por: Joyce López

About me

Database Administrator Sr Level 3

5.7 years @ Globant

Proud DBA

Open Source and NoSQL DBs Specialist.

Favorite cloud: AWS

Joyce López

Why we love RDS Databases?

Amazon Relational Database Service (RDS) allows users to set up,
operate, and scale a database in the cloud. It provides cost-efficient
and resizable capacity while automating time-consuming
administration tasks such as hardware provisioning, setup, patching,
and backups.

This frees users (mainly developers) to focus on providing fast
performance, high availability, security and compatibility.

Amazon RDS is available on several database instance types -
optimized for memory, performance or I/O - and provides you with six
familiar database engines to choose from including Amazon Aurora,
MySQL, PostgreSQL, MariaDB, Oracle Database, and SQL Server.

Why we love RDS Databases?

Easy Scalability

High Availability and
managing large amounts
of data.

Automated Backups
and Snapshots

Fully Managed Service

Read Replicas for

Improved Performance

Easy to implement

Relational Data Storage

Integration with other AWS

Services

What's up with PostgreSQL?
The database we will talk about today is PostgreSQL and the reason behind that is
the experience we acquired when we had two different projects requesting major
version upgrades in this engine.

The first of them was not planned at all, hence important factors were not
considered in the analysis. For the second, the correct analysis and planning were
carried out. Let's analyze::

Unplanned upgrade:

- API version was not compatible with the new
version of PostgreSQL.
- Errors in deprecated data types, reg types and
extensions.
- The DB had to be restored to its previous version.
- The restore caused slowness in reads to the DB.
- DB restore and analyze caused an 18 hour delay
in API transactions.

Planned upgrade:

- API version was compatible with the PostgreSQL
version.
- Fixed deprecated data types and corresponding
extensions.
- A restore was not necessary and the impact of
slowness was minimized with the appropriate
analyze and reindex.
- The upgrade took one hour in total to complete.
There was no delay in transactions.

Don’ts of a safe Upgrade

It is important to recognize the practices that can put our upgrade at risk.
Taking the time for a detailed analysis can save us from having a lot of
headaches. Avoid doing this:

- Not doing prior research. Versions, End of Life support dates, compatibility and
deprecated features.

- Not reviewing parameters and making the necessary adjustments.

- Not planning a Backup and Restore strategy.

- Not having a contingency plan in case of slowness.

- Skip validation of data, sessions and memory usage.

Before The Upgrade:

During The Upgrade:

1. Checking end of life versions and suitable Major Version
2. Checking Matrix of features
3. Testing the Major Version Upgrade
4. Validating Parameter groups and Reg Data Types

1. Performing a secure Backup
2. Major Version Upgrade with AWS Console

After The Upgrade:

1. Analyze and Reindex
2. Restore back in case of failure
3. Interesting hacks to avoid slowness
4. Delete Test Endpoints

Do’s of a safe Upgrade
Phases to plan an Upgrade in PostgreSQL RDS

Before The Upgrade

Before deciding which will be the next version that will
best suit the needs for our clusters, we must consider the
dates when versions will be no longer supported.

You can review the full list for end of life of each version
in this AWS Docs link in the section named: "Release
calendar for Amazon RDS for PostgreSQL".

Refer the following Link for more information:
https://docs.aws.amazon.com/AmazonRDS/latest/Postg
reSQLReleaseNotes/postgresql-release-calendar.html

1. Checking end of life versions and suitable Major Version

https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-release-calendar.html
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-release-calendar.html

Before The Upgrade

Before planning the upgrade, we need to choose the most suitable
version for our cluster, first of all, this query helps us obtain a list of
the available versions for the targets.

It must get executed through the AWS CLI as follows:

aws rds describe-db-engine-versions \
 --engine aurora-postgresql \
 --engine-version version-number \
 --query
'DBEngineVersions[*].ValidUpgradeTarget[*].{EngineVersion:EngineVersion}
' \ --output text

In the AWS official docs we can find a very useful table, with both
major and minor version upgrade targets that are available for various
Aurora PostgreSQL DB versions.

1. Checking end of life versions and suitable Major Version

Before The Upgrade

It is possible that when doing a Major Version Upgrade some functionalities are no longer compatible between
versions, to reduce the impact of this, when choosing the new version we must consider the features matrix for
Postgresql. In the following example we can observe the differences in data types, functions and operators in the
different versions starting from version 11.

The complete list of comparisons is available in this link: https://www.postgresql.org/about/featurematrix/

2. Checking Matrix of features

https://www.postgresql.org/about/featurematrix/

Before The Upgrade

Before upgrading PostgreSQL DB clusters to a new major version, we
strongly recommend that you test the upgrade to verify that all your
applications work correctly.

Making a copy of the original DB is the best alternative before
starting any upgrade process, this will allow you to make the
corresponding tests on the application side without affecting the
original DB. Furthermore, it could be easily rebuilt in case of detecting
any issue, discarding this way the need of a regression plan.

Note: Keep in mind that a Major Version Upgrade implies a period of
downtime, which will leave your applications without service, it is
important to plan well the maintenance window. The time that the
upgrade can take is relative, an estimate can be obtained during the
testing on a copy of our DB.

3. Testing the Major Version Upgrade

Before The Upgrade

Getting Parameter Groups is really important to avoid that parameters
remain different between versions (in case we are using the Custom
ones). If the DB is using Default parameter groups, the upgrade process
will automatically assign the one corresponding to the new version, on
the other hand, if they are of Custom type, we will have to follow the
recommendations of the AWS Docs:

1. Specify the default DB instance, DB cluster parameter group, or both
for the new DB engine version.
2. Create your own custom parameter group for the new DB engine
version.

Note: If you associate a new DB instance or DB cluster parameter group
as a part of the upgrade request, make sure to reboot the database after
the upgrade completes to apply the parameters.

4. Validating Parameter groups and Reg Data Types

Before The Upgrade

There are two aspects to consider in preparation for the
upgrade, either for testing or the final upgrade. AWS docs
recommend verify the Prepared Transactions, Reg Data Types
and Templates as follows:

1. Commit or roll back all open prepared transactions before
attempting an upgrade. Remove all uses of the reg* data types
before attempting an upgrade.
2. To verify that there are no uses of unsupported reg* data
types, use the following query for each database.

4. Validating Parameter groups and Reg Data Types

SELECT count(*)
FROM pg_catalog.pg_class c, pg_catalog.pg_namespace
n, pg_catalog.pg_attribute a
 WHERE c.oid = a.attrelid
 AND NOT a.attisdropped
 AND a.atttypid IN
('pg_catalog.regproc'::pg_catalog.regtype,

'pg_catalog.regprocedure'::pg_catalog.regtype,

'pg_catalog.regoper'::pg_catalog.regtype,

'pg_catalog.regoperator'::pg_catalog.regtype,

'pg_catalog.regconfig'::pg_catalog.regtype,

'pg_catalog.regdictionary'::pg_catalog.regtype)
 AND c.relnamespace = n.oid
 AND n.nspname NOT IN ('pg_catalog',
'information_schema');

During The Upgrade

The upgrade process creates a DB cluster snapshot of your DB
cluster during upgrading, so you can skip this step, although an
additional snapshot can give us more security in case we have
to revert the Upgrade.

If you also want to do a manual backup before the upgrade
process, refer the following link for more information:

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUser
Guide/aurora-restore-snapshot.html

1. Performing a secure Backup

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-restore-snapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-restore-snapshot.html

During The Upgrade

1. Sign in to the AWS Management Console and open the
Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose
the DB cluster that you want to upgrade.

3. Choose Modify. The Modify DB cluster page appears.

4. For Engine version, choose the new version.

5. Choose Continue and check the summary of modifications.

2. Major Version Upgrade with AWS Console

6. To apply the changes immediately, choose Apply
immediately. Choosing this option can cause an outage in some
cases.

7. On the confirmation page, review your changes. If they are
correct, choose Modify Cluster to save your changes or choose
Back to edit your changes or Cancel to cancel your changes.

After The Upgrade

 After you complete a major version upgrade, is important to refresh
the statistics with ANALYZE and REINDEX as follows:

1. Run the ANALYZE operation to refresh the pg_statistic table.

 2. Run REINDEX on any hash indexes you have. Hash indexes could
change in version upgrade and must be rebuilt. To locate invalid hash
indexes, run the following SQL for each database that contains hash
indexes:

1. Analyze and Reindex

ANALYZE [(option [, ...])] [table_and_columns
[, ...]]
ANALYZE [VERBOSE] [table_and_columns [, ...]]

SELECT idx.indrelid::regclass AS table_name,
 idx.indexrelid::regclass AS index_name
FROM pg_catalog.pg_index idx
 JOIN pg_catalog.pg_class cls ON cls.oid =
idx.indexrelid
 JOIN pg_catalog.pg_am am ON am.oid = cls.relam
WHERE am.amname = 'hash'
AND NOT idx.indisvalid;

REINDEX [(option [, ...])] { INDEX | TABLE |
SCHEMA | DATABASE | SYSTEM } [CONCURRENTLY] name

After The Upgrade

When you initiate the upgrade process to a new major version, Aurora
PostgreSQL takes a snapshot of the Aurora DB cluster before it makes any
changes to your cluster. This snapshot is created for major version upgrades
only, not minor version upgrades. The snapshot name includes preupgrade as
its prefix, the name of your Aurora PostgreSQL DB cluster, the source version,
the target version, and the date and timestamp:

Preupgrade-endpoint-rds-global-db-12-8-to-14-06-2024-01-13-00-21

Besides this preupgrade snapshot, you can use the backup snapshot that you
take in the Perform a Backup to restore back your cluster to the previous
version before the Upgrade.

2. Restore back in case of failure

After The Upgrade

A RDS database that was recently restored from an snapshot will be slower than
a usual database. In a restored database, a query that would normally take up to
1-2 seconds can run for more than a minute and even time out.

Why?
The reason is that RDS snapshots are stored in S3 and when you restore a
database from a snapshot AWS doesn’t copy the data from S3 to the RDS DB’s
underlying EBS volume. Instead, the data stays in S3 until the database tries to
access it. Only when you run a query for the first time does the queried data get
copied to the RDS DB. This lazy loading is what causes the slowness.

3. Interesting hacks to avoid slowness

After The Upgrade

What to do?
We can let the lazy loading work, and sometime, eventually the data will get copied
over. However, that is often not acceptable.

One way to optimize the reads and force the optimizer to draw explain plans, we can
run "Select * From Table" queries to each table, but the beautiful PostgreSQL offers
us the option of running a vacuum analyze, which will update the plan full table scan
of all objects.

For smaller databases (less than 100Gb) this won’t take much time. However, for
bigger ones, a vacuum may take many hours. Once it finishes, the slowness and
delays disappear. It’s important to consider this in our planning before performing
any upgrade.

3. Interesting hacks to avoid slowness

Summary

- Make thorough planning before any action.

- Stay aware of End of Life dates to avoid hasty actions

- Invest all the necessary time in testing and time estimates,
downtime is a very important factor.

- Be sure to decommission all unnecessary endpoints and
snapshots to avoid excessive charges on your bill.

- If you have any questions, call your DBA trusted friend!

- Enjoy your Database in its new version!

Don’t forget:

¡Gracias!
Keep on Rocking!

linkedin.com/in/joselyne
-lopez-0710ab82

@joyce.dbatech

