
November 2021

Visualizing
Software Architecture
Perla Velasco-Elizondo



2

What is software architecture?



3

Software Architecture Defined

“The software architecture of a system is the set 
of structures needed to reason about the 
system, which comprise software elements, 
relations among them, and properties of both.”

Len Bass, Paul Clements, and Rick Kazman. 
Software Architecture in Practice (3rd ed.). Addison-Wesley Professional, 2012.



4

Human body 
comprised of multiple 
real structures

A static view of one 
human structure

A dynamic view of 
the same structure

Structures …

Let's revise this analogy …



5

It’s usually difficult 
to show 
all structures, 
from 
all perspectives, 
on a single 
representation



6

Architectural View

- A view is a diagram.

- A view is a abstract representation of one or
more structures of an architecture that 
illustrates how the architecture addresses one
or more architectural requirements. 



7

Some well-known views are:

1. Static
2. Dynamic
3. Physical



8

Static View

- A.k.a. Module, Logic View.
- Shows structures with elements and relationships that 

exist in development and correspond to 
implementation units.

- Shows the system partitioning and assignment of 
responsibilities.



9

Source: Simon Brown. 2016. 
Software Architecture for 
Developers - Volume 2. 
Leanpub.



10

Dynamic View

- A.k.a. Components & Connectors View
- Shows structures with elements and relationships that 

exist in execution time.



11



12

Physical View

- A.k.a Allocation View
- Shows structures with elements and 

relationships that exist in deployment time.



13



14

Abstractions

- Abstraction is about reducing detail; important 
characteristics are made more visible by leaving 
details aside.

- Abstractions help us reason about a big and/or 
complex software system



15

A common 

set of abstractions/views

is more important
than a common notation

Simon Brown



16

Notations

- There are different notations for documenting 
architectural views

- Each notation has its benefits and shortcomings
- However, when using a notation for documenting a 

view, you must remember some important 
aspects ...



17

What do you think 
about this view?

What is 
missing?

Is it 
useful?

What kind of view 
is it?



18

What do you think 
about this view?

What is 
missing?

Is it 
useful?

What kind of view 
is it?



19

Software Architecture Defined

“The software architecture of a system is the set 
of structures needed to reason about the 
system, which comprise software elements, 
relations among them, and properties of both.”

Len Bass, Paul Clements, and Rick Kazman. 
Software Architecture in Practice (3rd ed.). Addison-Wesley Professional, 2012.



20

Aspects to remember 

General

❑ The view has a title
❑ It is clear the type of the view 
❑ It is clear the scope of the view
❑ The view has a key/legend 



21

Aspects to remember 

Elements
❑ Every element has a name
❑ It is clear the type of every element? (e.g. software system, component, etc)
❑ It is clear what the element does
❑ Where applicable, it is clear the technology choices associated with every 

element
❑ It is clear the meaning of all acronyms and abbreviations 
❑ It is clear the meaning of all shapes/icons
❑ It is clear the meaning of all border styles (e.g. solid, dashed, etc)
❑ It is clear the meaning of all element sizes (e.g. small vs large boxes)



22

Aspects to remember 

Relationships
❑ Every line has a label describing the intent of that relationship
❑ Where applicable, it is clear the technology choices associated with every 

relationship? (e.g. protocols for communication)
❑ It is clear the meaning of all acronyms and abbreviations used
❑ It is clear the meaning of all colours used
❑ It is clear the meaning of all arrowheads used
❑ It is clear the meaning of all line styles (e.g. solid, dashed, etc)



23

Aspects to remember 

Other

❑ Each view fits on one page
❑ Do not mix runtime and static elements in the same 

diagram

❑ There is more than one view to describe the whole 
system

❑ Keep structural and semantic consistency across diagrams 



24

Notations

There are three main notations:

1. Informal
2. Semi-formal
3. Formal



25



26

C4 Model
- Context: A high-level diagram that sets the scene; including key 

system dependencies and actors.
- Container: A container diagram shows the high-level technology 

choices, how responsibilities are distributed across them and how 
the containers communicate.

- Component: For each container, a component diagram lets you see 
the key logical components and their relationships.

- Classes: This is an optional level of detail and I will draw a small 
number of high-level UML class diagrams if I want to explain how a 
particular pattern or component will be (or has been) implemented.



27

Context

Source: Simon Brown. 2016. 
Software Architecture for 
Developers - Volume 2. Leanpub.



28

Containers

Source: Simon Brown. 2016. 
Software Architecture for 
Developers - Volume 2. Leanpub.



29

Components

Source: Simon Brown. 2016. 
Software Architecture for 
Developers - Volume 2. Leanpub.



30



31



“
Communication
works
for those 
who work at it ”




